extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC20).1C22 = Dic5.14D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).1C2^2 | 160,99 |
(C2xC20).2C22 = C23.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).2C2^2 | 160,100 |
(C2xC20).3C22 = C22.D20 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).3C2^2 | 160,107 |
(C2xC20).4C22 = C20:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).4C2^2 | 160,109 |
(C2xC20).5C22 = C4:D20 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).5C2^2 | 160,116 |
(C2xC20).6C22 = D10:2Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).6C2^2 | 160,118 |
(C2xC20).7C22 = C4:C4:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).7C2^2 | 160,119 |
(C2xC20).8C22 = C10.D8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).8C2^2 | 160,14 |
(C2xC20).9C22 = C20.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).9C2^2 | 160,15 |
(C2xC20).10C22 = D20:6C4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).10C2^2 | 160,16 |
(C2xC20).11C22 = C10.Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).11C2^2 | 160,17 |
(C2xC20).12C22 = C20.53D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).12C2^2 | 160,29 |
(C2xC20).13C22 = C20.46D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4+ | (C2xC20).13C2^2 | 160,30 |
(C2xC20).14C22 = C4.12D20 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4- | (C2xC20).14C2^2 | 160,31 |
(C2xC20).15C22 = D20:7C4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).15C2^2 | 160,32 |
(C2xC20).16C22 = D4:Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).16C2^2 | 160,39 |
(C2xC20).17C22 = C20.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).17C2^2 | 160,40 |
(C2xC20).18C22 = Q8:Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).18C2^2 | 160,42 |
(C2xC20).19C22 = C20.10D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).19C2^2 | 160,43 |
(C2xC20).20C22 = D4:2Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).20C2^2 | 160,44 |
(C2xC20).21C22 = Dic5:3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).21C2^2 | 160,108 |
(C2xC20).22C22 = C4.Dic10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).22C2^2 | 160,111 |
(C2xC20).23C22 = D5xC4:C4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).23C2^2 | 160,112 |
(C2xC20).24C22 = D20:8C4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).24C2^2 | 160,114 |
(C2xC20).25C22 = D5xM4(2) | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).25C2^2 | 160,127 |
(C2xC20).26C22 = D20.2C4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).26C2^2 | 160,128 |
(C2xC20).27C22 = C8:D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4+ | (C2xC20).27C2^2 | 160,129 |
(C2xC20).28C22 = C8.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4- | (C2xC20).28C2^2 | 160,130 |
(C2xC20).29C22 = C2xD4:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).29C2^2 | 160,152 |
(C2xC20).30C22 = D4.D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).30C2^2 | 160,153 |
(C2xC20).31C22 = C2xD4.D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).31C2^2 | 160,154 |
(C2xC20).32C22 = D4xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).32C2^2 | 160,155 |
(C2xC20).33C22 = C20.17D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).33C2^2 | 160,157 |
(C2xC20).34C22 = C20:2D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).34C2^2 | 160,159 |
(C2xC20).35C22 = C20:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).35C2^2 | 160,161 |
(C2xC20).36C22 = C2xQ8:D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).36C2^2 | 160,162 |
(C2xC20).37C22 = C20.C23 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).37C2^2 | 160,163 |
(C2xC20).38C22 = C2xC5:Q16 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).38C2^2 | 160,164 |
(C2xC20).39C22 = Q8xDic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).39C2^2 | 160,166 |
(C2xC20).40C22 = C20.23D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).40C2^2 | 160,168 |
(C2xC20).41C22 = D4.Dic5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).41C2^2 | 160,169 |
(C2xC20).42C22 = D4:D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4+ | (C2xC20).42C2^2 | 160,170 |
(C2xC20).43C22 = D4.8D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).43C2^2 | 160,171 |
(C2xC20).44C22 = D4.9D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4- | (C2xC20).44C2^2 | 160,172 |
(C2xC20).45C22 = C2xD4:2D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).45C2^2 | 160,218 |
(C2xC20).46C22 = C2xQ8xD5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).46C2^2 | 160,220 |
(C2xC20).47C22 = C2xQ8:2D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).47C2^2 | 160,221 |
(C2xC20).48C22 = Q8.10D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).48C2^2 | 160,222 |
(C2xC20).49C22 = D4.10D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4- | (C2xC20).49C2^2 | 160,225 |
(C2xC20).50C22 = C23.11D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).50C2^2 | 160,98 |
(C2xC20).51C22 = Dic5:4D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).51C2^2 | 160,102 |
(C2xC20).52C22 = D10.12D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).52C2^2 | 160,104 |
(C2xC20).53C22 = D10:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).53C2^2 | 160,105 |
(C2xC20).54C22 = Dic5.5D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).54C2^2 | 160,106 |
(C2xC20).55C22 = Dic5.Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).55C2^2 | 160,110 |
(C2xC20).56C22 = C4:C4:7D5 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).56C2^2 | 160,113 |
(C2xC20).57C22 = D10.13D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).57C2^2 | 160,115 |
(C2xC20).58C22 = D10:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).58C2^2 | 160,117 |
(C2xC20).59C22 = C5xC4.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).59C2^2 | 160,50 |
(C2xC20).60C22 = C5xC4.10D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).60C2^2 | 160,51 |
(C2xC20).61C22 = C23.18D10 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).61C2^2 | 160,156 |
(C2xC20).62C22 = Dic5:D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).62C2^2 | 160,160 |
(C2xC20).63C22 = Dic5:Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).63C2^2 | 160,165 |
(C2xC20).64C22 = D10:3Q8 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).64C2^2 | 160,167 |
(C2xC20).65C22 = C5xC22.D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).65C2^2 | 160,184 |
(C2xC20).66C22 = C5xC4.4D4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).66C2^2 | 160,185 |
(C2xC20).67C22 = C5xC42.C2 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 160 | | (C2xC20).67C2^2 | 160,186 |
(C2xC20).68C22 = C5xC42:2C2 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | | (C2xC20).68C2^2 | 160,187 |
(C2xC20).69C22 = C5xC8:C22 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 40 | 4 | (C2xC20).69C2^2 | 160,197 |
(C2xC20).70C22 = C5xC8.C22 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).70C2^2 | 160,198 |
(C2xC20).71C22 = C5x2- 1+4 | φ: C22/C1 → C22 ⊆ Aut C2xC20 | 80 | 4 | (C2xC20).71C2^2 | 160,233 |
(C2xC20).72C22 = C20.6Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).72C2^2 | 160,91 |
(C2xC20).73C22 = C42:D5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).73C2^2 | 160,93 |
(C2xC20).74C22 = C4.D20 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).74C2^2 | 160,96 |
(C2xC20).75C22 = C42:2D5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).75C2^2 | 160,97 |
(C2xC20).76C22 = C2xC10.D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).76C2^2 | 160,144 |
(C2xC20).77C22 = C4xC5:D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).77C2^2 | 160,149 |
(C2xC20).78C22 = C23.23D10 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).78C2^2 | 160,150 |
(C2xC20).79C22 = C5xC42:C2 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).79C2^2 | 160,178 |
(C2xC20).80C22 = C20.44D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).80C2^2 | 160,23 |
(C2xC20).81C22 = C40:6C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).81C2^2 | 160,24 |
(C2xC20).82C22 = C40:5C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).82C2^2 | 160,25 |
(C2xC20).83C22 = D20:5C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).83C2^2 | 160,28 |
(C2xC20).84C22 = C4xDic10 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).84C2^2 | 160,89 |
(C2xC20).85C22 = C20:2Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).85C2^2 | 160,90 |
(C2xC20).86C22 = C4xD20 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).86C2^2 | 160,94 |
(C2xC20).87C22 = C20:4D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).87C2^2 | 160,95 |
(C2xC20).88C22 = C2xC40:C2 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).88C2^2 | 160,123 |
(C2xC20).89C22 = C2xD40 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).89C2^2 | 160,124 |
(C2xC20).90C22 = C2xDic20 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).90C2^2 | 160,126 |
(C2xC20).91C22 = C20.48D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).91C2^2 | 160,145 |
(C2xC20).92C22 = C2xC4:Dic5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).92C2^2 | 160,146 |
(C2xC20).93C22 = C23.21D10 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).93C2^2 | 160,147 |
(C2xC20).94C22 = C20:7D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).94C2^2 | 160,151 |
(C2xC20).95C22 = C22xDic10 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).95C2^2 | 160,213 |
(C2xC20).96C22 = D20:4C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 40 | 2 | (C2xC20).96C2^2 | 160,12 |
(C2xC20).97C22 = C40.6C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).97C2^2 | 160,26 |
(C2xC20).98C22 = D20.3C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).98C2^2 | 160,122 |
(C2xC20).99C22 = D40:7C2 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).99C2^2 | 160,125 |
(C2xC20).100C22 = C2xC4.Dic5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).100C2^2 | 160,142 |
(C2xC20).101C22 = C4xC5:2C8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).101C2^2 | 160,9 |
(C2xC20).102C22 = C42.D5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).102C2^2 | 160,10 |
(C2xC20).103C22 = C20:3C8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).103C2^2 | 160,11 |
(C2xC20).104C22 = C8xDic5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).104C2^2 | 160,20 |
(C2xC20).105C22 = C20.8Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).105C2^2 | 160,21 |
(C2xC20).106C22 = C40:8C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).106C2^2 | 160,22 |
(C2xC20).107C22 = D10:1C8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).107C2^2 | 160,27 |
(C2xC20).108C22 = C20.55D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).108C2^2 | 160,37 |
(C2xC20).109C22 = D5xC42 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).109C2^2 | 160,92 |
(C2xC20).110C22 = D5xC2xC8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).110C2^2 | 160,120 |
(C2xC20).111C22 = C2xC8:D5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).111C2^2 | 160,121 |
(C2xC20).112C22 = C22xC5:2C8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).112C2^2 | 160,141 |
(C2xC20).113C22 = C2xC4xDic5 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).113C2^2 | 160,143 |
(C2xC20).114C22 = C5xD4:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).114C2^2 | 160,52 |
(C2xC20).115C22 = C5xQ8:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).115C2^2 | 160,53 |
(C2xC20).116C22 = C5xC4wrC2 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 40 | 2 | (C2xC20).116C2^2 | 160,54 |
(C2xC20).117C22 = C5xC4.Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).117C2^2 | 160,56 |
(C2xC20).118C22 = C5xC2.D8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).118C2^2 | 160,57 |
(C2xC20).119C22 = C5xC8.C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).119C2^2 | 160,58 |
(C2xC20).120C22 = C10xC4:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).120C2^2 | 160,177 |
(C2xC20).121C22 = D4xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).121C2^2 | 160,179 |
(C2xC20).122C22 = Q8xC20 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).122C2^2 | 160,180 |
(C2xC20).123C22 = C5xC4:D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).123C2^2 | 160,182 |
(C2xC20).124C22 = C5xC22:Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).124C2^2 | 160,183 |
(C2xC20).125C22 = C5xC4:1D4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).125C2^2 | 160,188 |
(C2xC20).126C22 = C5xC4:Q8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).126C2^2 | 160,189 |
(C2xC20).127C22 = C10xM4(2) | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).127C2^2 | 160,191 |
(C2xC20).128C22 = C5xC8oD4 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).128C2^2 | 160,192 |
(C2xC20).129C22 = C10xD8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).129C2^2 | 160,193 |
(C2xC20).130C22 = C10xSD16 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | | (C2xC20).130C2^2 | 160,194 |
(C2xC20).131C22 = C10xQ16 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).131C2^2 | 160,195 |
(C2xC20).132C22 = C5xC4oD8 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 80 | 2 | (C2xC20).132C2^2 | 160,196 |
(C2xC20).133C22 = Q8xC2xC10 | φ: C22/C2 → C2 ⊆ Aut C2xC20 | 160 | | (C2xC20).133C2^2 | 160,230 |
(C2xC20).134C22 = C5xC8:C4 | central extension (φ=1) | 160 | | (C2xC20).134C2^2 | 160,47 |
(C2xC20).135C22 = C5xC22:C8 | central extension (φ=1) | 80 | | (C2xC20).135C2^2 | 160,48 |
(C2xC20).136C22 = C5xC4:C8 | central extension (φ=1) | 160 | | (C2xC20).136C2^2 | 160,55 |